³õ¶þϲáÊýѧÁ·Ï°Ìâ
Ò»¡¢¶þ´Î¸ùʽµÄ
1. ¼ÆËãÌôÕ½£º
¶ÔÓÚ±í´ïʽ $\sqrt{48} + 3\sqrt{12}$ ºÍ $2\sqrt{27}$£¬ÄãÊÇ·ñÄܹ»Ñ¸ËÙ»¯¼ò£¿²Î¿¼´ð°¸Îª $4\sqrt{3}$ ºÍ $3 + 2\sqrt{5}$¡£
2. Ó¦ÓÃÌâʵÀý£º
º£Ð¥µÄËٶȹ«Ê½Îª $v = \sqrt{gd}$£¬ÆäÖÐ $g = 9.8 \, \text{m/s}^2$ ´ú±íÖØÁ¦¼***Ù¶È£¬¶ø $d$ ´ú±íº£Ë®¡£µ±º£Ë®Îª $980 \, \text{m}$ ʱ£¬ÄãÄÜ·ñÇó³öº£Ð¥µÄËÙ¶È£¿£º´úÈ빫ʽ¼ÆË㣬µÃµ½º£Ð¥ËÙ¶ÈΪ $98 \, \text{m/s}$¡£
¶þ¡¢·ÖʽµÄ°ÂÃØÓë·½³ÌµÄ
1. ·Öʽ»¯¼ò¼¼ÇÉ£º
³¢ÊÔ»¯¼ò $\frac{x^2 - 4}{x^2 + 4x + 4} \div \frac{x - 2}{x + 2}$¡£¼Çס£¬µ± $x eq -2$ ʱ£¬´ð°¸Îª $\frac{x + 2}{x + 2} = 1$¡£
2. ½â·Öʽ·½³ÌµÄÃØ¾÷£º
½â·½³Ì $\frac{3}{x-2} = \frac{5}{x}$ ʱ£¬²»ÒªÍü¼Ç¼ìÑé·ÖĸÊÇ·ñΪÁã¡£
Èý¡¢¼¸ºÎÊÀ½çµÄ×ۺϿ¼Ñé
1. µÈÑüÈý½ÇÐεİÂÃØ£º
ÕÆÎÕµÈÑüÈý½ÇÐεÄÐÔÖÊ£¬ÇáËÉÇó½âÑü³¤Îª 5 cm¡¢µ×±ß³¤Îª 6 cm µÄµÈÑüÈý½ÇÐεÄÖܳ¤ºÍÃæ»ý¡£Öܳ¤Îª 16 cm£¬Ãæ»ýΪ $12 \, \text{cm}^2$¡£
2. ƽÐÐËıßÐεÄÐÔÖÊÓ¦Óãº
ÔÚÆ½ÐÐËıßÐÎ $ABCD$ ÖУ¬Èô $E$ ÊÇ $AB$ µÄÖе㣬Á¬½Ó $DE$ ½»¶Ô½ÇÏß $AC$ ÓÚ $F$¡£ÈçºÎÖ¤Ã÷ $AF = \frac{1}{3}AC$£¿Ìáʾ£ºÀûÓÃÏàËÆÈý½ÇÐλòÖÐλÏß¶¨Àí¡£
ËÄ¡¢ÆÚÄ©³å´Ì£¬¾«Ñ¡Ä£Äâ¾í
1. Ñ¡ÔñÌâÒÉÄѵ㣺
¶ÔÓÚ·Öʽ $\frac{x^2 - 1}{x - 1}$£¬µ±ÆäֵΪ 0 ʱ£¬$x$ µÄȡֵÊǶàÉÙ£¿Ñ¡ÔñÏîΪ A. 1£¬B. -1£¬C. ¡À1£¬D. Î޽⡣´ð°¸Îª B£¬µ«Ðè×¢ÒâÅųý·ÖĸΪÁãµÄÇé¿ö¡£
2. ѹÖáÌâÌôÕ½£º
ÒÑÖª $a = \sqrt{3} + 1$ ºÍ $b = \sqrt{3} - 1$£¬Çó $a^2 + ab + b^2$ µÄÖµ¡££ºÀûÓù«Ê½Õ¹¿ªºóµÃµ½ $(a + b)^2 = 12 + 2ab = 10$¡£
Îå¡¢´ð°¸Óë¸ÅÀÀ
¶þ´Î¸ùʽ£º×¢ÒâÔËËãµÄ׼ȷÐÔºÍ˳Ðò£¬È·±£·ÖĸµÄÓÐÀíÐÔ¡£
·Öʽ·½³Ì£º½â·½³ÌºóÎñ±Ø¼ìÑéÔö¸ù¡£
¼¸ºÎÖ¤Ã÷£ºÁé»îÓ¦Óù´¹É¶¨ÀíºÍÏàËÆÈý½ÇÐÎÐÔÖʽøÐÐÖ¤Ã÷¡£
½¨ÒéͬѧÃǽáºÏ½Ì²Äͬ²½Á·Ï°£¬Õë¶Ô×Ô¼ºµÄ±¡ÈõÕ½ڽøÐÐÓÐÕë¶ÔÐÔµÄÇ¿»¯ÑµÁ·£¬ÌáÉýÊýѧ¼¼ÄÜ¡£
ÖÎÁÆÍ´¾
- Ô¾Óе㵺ìɫѪ Ô¾Óе㵺ìɫѪÔõô»ØÊÂ
- Í´¾½Å³é½îÎݸÒÌÂèÍ´µ½½Å³é½î
- Ñ۽dz¤°ß³Ôʲôµ÷Àí Èý´óʳƷ¸øÄã¸ü¶à½¡¿µ¹Ø»³
- ½äÄÌÁ˾ÍÀ´Ô¾_½äÄÌÁ˾ÍÀ´Ô¾Ôõô°ì
- ÈçºÎ´Ó¾ÆºóÅжÏÄÐÈ˵ÄÐÔ¸ñ£¿
- Ô¾ÍêÈ«¸É¾»ºó¼¸Ìì¿ÉÒÔͬ·¿
- Ô¾À´ÁËÓÖÓÐʲô·´Ó¦Âð
- Å®ÉúÎÞÍ´¾»á±ä³ÉÍ´¾Âð
- ÈçºÎ»¤ÀíǰÁÐÏÙÔöÉú 8´óÒªµã°ïÄãÕÒ»Ø
- Í´¾ÐèÒª×öʲô¼ì²é£¿MRI¿ÉÕÒµ½Í´¾ÔÒò
- ÌïÆßÍ´¾½ºÄÒÄܽøÒ½±£Ã´
- ±£ÃÜÐû´«Ô¾Àú(±£ÃÜÐû´«ÔÂ×ܽᱨ¸æ)
- µÃÁËÈéÏÙ°©¾Í²»Äܳ¤ÊÙ£¿¿ÉÊÇËý»îµ½ÁË106Ë꣡
- À´Ô¾¿ÉÒÔ³ÔÓã¸É ÒÌÂèÀ´¿ÉÒÔ³ÔÓã¸ÎÓÍÂð
- ·ÎÈȳ¤¶»³ÔʲôʳÎï
- ÖÆÃ¹ËØÆ¬ÔÂ¾ÍÆ³Ù_ÓÃÖÆÃ¹ËØ»áµ¼ÖÂÔ¾ÌáǰÂð